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J. Phys. A: Math. Gen., 13 (1980) L185-L188. Printed in Great Britain 

LETTER TO THE EDITOR 

Wigner distribution functions and the representation of 
canonical transformations in quantum mechanics 

G Garcia-Calder6n and M Moshinskyt 
Instituto de Fisica, UNAM, Apdo Postal 20-364, MCxico 20, DF  

Received 10 March 1980 

Abstract. In this Letter we show how for classical canonical transformations we can pass, 
with the help of Wigner distribution functions, from their representation U in the 
configurational Hilbert space to a kernel K in phase space. The latter is a much more 
transparent way of looking at representations of canonical transformations, as the classical 
limit is reached when h --* 0 and the successive quantum corrections are related with the 
power of hZ", n = I, 2 , .  . . . 

In recent publications one of the authors (MM) and his collaborators have discussed 
extensively the representation in quantum mechanics of non-linear and non-bijective 
canonical transformations (Mello and Moshinsky 1975, Kramer et a1 1978, Moshinsky 
and Seligman 1978, 1979a, b). The representations, to be denoted by U, are given in 
definite Hilbert spaces like, for example, the one associated with coordinate 4 ;  thus the 
matrix elements (4'1 Ulq") related with specific canonical transformations were derived 
explicitly. It is not easy though to see from these matrix elements the quantum 
modifications to the canonical transformations, as the latter are formulated in phase 
space rather than in Hilbert space. Thus it is interesting to discuss the representation of 
canonical transformations in the phase space version of quantum mechanics that was 
developed originally by Wigner (1932), with the help of the distribution functions that 
now bear his name. We shall do this in the present Letter, illustrating the analysis with 
the representations of some simple examples of canonical transformations. 

We begin by recalling the definition of Wigner's distribution function f(4, p )  for a 
given wavefunction $(q), i.e. 

where we use Dirac's notation (q1$) = $(q), ($14) = $*(q), and restrict ourselves to a 
single degree of freedom. As is well known (Wigner 1932), the integration of f ( q ,  p) 
with respect to p or 4 gives the probability density for the state I$) in configuration or 
momentum space respectively. 

We consider now a canonical transformation 
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under which a classical distribution function f(q, p )  would of course transform into 
F(q, P )  given by 

F(q, P )  =flQ(s,  P ) ,  P(q, P I ] .  (3) 

In quantum mechanics though, the state 14) transforms into (Mello and Moshinsky 
1975, Kramer et a1 1978, Moshinsky and Seligman 1978, 1979a, b) 

l4)+ IW = Ul4), (4) 
and thus 

m 

-m 

Writing z* = q’ f y’ when it is associated with 4, and z* = 4’* y f  when it is associated 
with U, and integrating over q’, y’, y’, y, with the extra factor 

S(y’- y’) = ( T h y  ja exp( 2iPYY’ h - Y’)) dp‘, 
-m 

we immediately arrive at the relation 
m 

-m 

in which the kernel K is given by 
m 

-m 

where from (3) we expect that 

lim fi-0 (q’p’lKlqp) = S [ q ’ -  Q(4,  p)lSb’-P(q, P I ] .  (8) 

To obtain K we must known U which, in principle (Dirac 1947), is determined by 
the equations (Mello and Moshinsky 1975, Kramer et a1 1978, Moshinsky and 
Seligman 1978, 1979a, b) 

Q(s, P )  = WUf, P(4, P )  = UPU’, (9) 

where q, p are now quantum mechanical operators. As UtU = I, we can pass U t  to the 
left-hand side, and taking matrix elements between a bra (4’1 and a ket 19”) obtain the 
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equations (Mello and Moshinsky 1975, Kramer et a1 1978, Moshinsky and Seligman 
l978,1979a, b) 

Of course these equations only make sense when Q, P are well defined operators; 
otherwise, more sophisticated procedures need to be used (Moshinsky and Seligman 
1978, 1979a, b). 

We shall now consider two simple examples of canonical transformations. The first 
will be the linear one 

Q = aq + bp, P = cq + dp; ad - bc = 1, b > 0, (1 1) 

(4’1 Ulq”) = (2.rrb)-ll2 exp[(-i/2b)(atf2 - 2q’q‘’+ dqfr2)], (12) 

where the constants are all real. We have then (Moshinsky and Quesne 1971) 

which satisfies equations (10) if we note from (11) that c = (ad - l ) /b .  Introducing (12) 
in (7) and using the relation (4’1 Utlq”) = (q”l Ulq’)” we immediately obtain 

(4’P’IKlw)= S[q’-(aq +bp)lS[p’-(cq +@)I. (13) 
Thus for the linear canonical transformation the kernel coincides with its classical limit 
(8), in agreement with the fact that for this type of transformation Poisson and Moyal 
(1949) brackets coincide. 

In the second example we take Q as the Hamiltonian of a linear potential (Landau 
and Lifshitz 1958), and thus we have the canonical transformation 

Q = (p2/2m)-Foq, P = -p/Fo, (14) 

where m is the mass, Fo a constant of the dimension of force, and {a, P} = 1. Equation 
( loa)  leads then to an Airy function (Landau and Lifshitz 1958), and we also satisfy 
( lob )  and get a normalised (Landau and Lifshitz 1958) unitary representation if we 
write 

Substituting (Ma) into (7) and making use of (15d) we can show straightforwardly that 
for the canonical transformation (14) the kernel K becomes 

We note first that when h + 0 the function @ becomes (Landau and Lifshitz 1958) either 
very small or very rapidly oscillating except when q’ 2: (p2/2m) - Foq. Furthermore, 
with the help of (15d) we easily see that .rr- j-m @ ( x )  dx = 1. Thus the expression in 112 -to 
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{ } in (16) tends to a S function in the limit h+O, so that the kernel K goes into its 
classical limit (8)' where Q and P are given by (14). 

To see what the quantum corrections are, it is best to apply the K of (16) to a smooth 
distribution function f (q ,  p ) ,  rather than study it directly. We choose 

f ( q ,  P )  = (.rrub)-' exP[- ( q 2 / a 2 )  4 p 2 / m  (17) 
where from (1) we will have the relation b = k / u  iff is obtained from a Gaussian state in 
configuration space. Again using ( 1 5 4  we obtain for the new distribution function 
F(q, p )  the expression 

where Q, P are given by (14). As indicated in (3) ,  f ( Q ,  P) is theclassical change in the 
distribution function due to the canonical transformation, and it will be the only one 
remaining in (18) if h+ 0. Thus the terms associated with the higher powers of h2 
indicate the successive quantum corrections to the distribution function when we 
perform the canonical transformation. 

The examples discussed in this Letter are very specialised, but they clearly indicate 
the procedure to be followed in general. Among the more interesting cases where this 
formalism can be applied are those of non-bijective (Kramer et a1 1978, Moshinsky and 
Seligman l978,1979a, b) canonical transformations. The concepts of ambiguity group 
and ambiguity spin used in the derivation of the representation U can then give 
interesting insights into the structure of phase space as a carrier of canonical trans- 
formations, as will be discussed in future publications. 

The authors are indebted to Professor E P Wigner for a stimulating presentation of his 
distribution function formalism and helpful discussions, during his recent stay in 
Mexico. 
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